Graphene devices and integration: A primer on challenges

Archana Venugopal (TI)

8 Nov 2016

Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin

- Where we are
- Issues
 - Contact resistance
 - Graphene type
 - Mobility
- Summary

TI at a glance

Designs, manufactures and sells semiconductors

- Founded in 1930
- Nearly100,000 products
- More than 100,000 customers
- #1 in analog 18% market share
- #2 in embedded processing 15% market share

Invests in the future

- Nearly \$9 billion invested over last 5 years in productdevelopment, R&D labs, manufacturing development & university partnerships
- \$1.4 billion in R&D in 2014
- \$385 million in Cap Ex in 2014

Focuses on innovation

- TI patents issued worldwide
 - More than 40,000 cumulatively
 - $\circ~$ More than 1,000 in 2013

Semiconductor timeline

Graphene – a timeline

Graphene - applications

Bilayer pseudospin FET (BiSFET)

- Should graphene be evaluated only as a switch ?
- What are the roadblocks to integration?

F. Schedin et al., Nature Mat. 6, 652 (2007)

single molecule detection

Z. Yan et al., Nature Comm., 3, 827 (2012)

Where we are

Issues

- Contact resistance
- Graphene type
- o Mobility
- Adoption by industry

Contacts on graphene

S.Russo et al., Physica E. 42, 677 (2010), A.Venugopal et al., Appl. Phys. Lett. 96, 013512 (2010), Nagashio et al., APL 97, 143514 (2010)

<u>Metal – Graphene interface reactions :</u> charge transfer and Fermi level shift

Giovannetti G. et al., Phys. Rev. Letters. 101, 026803(2008); J.H. Lee et al., Nature Nano. 3 , 486(2008) W. X. Wang et al., J. Appl. Phys. 109, 07C501 (2011)

Issues:

- High R_c not suitable for low bias operations; affects g_m
- R_c for graphene > 10⁻⁶ Ohm cm²; for Si – 10⁻⁸ Ohm – cm²

Reported improvements

J. Robinson et al., APL 98, 053103 (2011)

Venugopal, A. (2012). PhD thesis, UT, Dallas **Thinner PMMA for transfer** Ni-Au (a) _= 3μm CUD R_c(kΩ) old transfer new transfer 0 10 20 30 W_ (μm) $(a)_{800}$ Double Contacts CVD-grown (b) Top Contacts Single Laver 700 (m 600 500 £ 400 10 15 20 25 30

A.D. Franklin et al., IEEE EDL 33, 17(2012) <u>Double contacts</u>

Device Set #

<u>lssues:</u>

- Absence of a standardized pre clean baseline flow
- Different graphene sources

W.S. Leong et al., ACS Nano, 8, 994 (2014)

S. Gahng et al., APL 104, 223110 (2014) <u>CO₂ cluster cleans</u>

- Where we are
- Issues
 - Contact resistance
 - Graphene type
 Mobility
- Adoption by industry

Graphene types K.S. Novoselov et al., Science 306, 666 (2004)

Exfoliated

C. Berger et al., J. Phys. Chem. B 108, 19912 (2004)

Epitaxial

S. Stankovich et al., Carbon 45, 7 (2007)

Chemically reduced

CVD grown

Issue:

- Only CVD process yields large area monolayer graphene
 - Typical growth temperature > 1000C
 - Typical substrate Cu
 - Involves transfer to substrate of choice post growth

X. Li et al., Science 324, 1312 (2009)

Transfer and cleaning

J.W. Suk et al., ACS Nano, 5 , 6916(2011,

A. Pirkle et al., Appl. Phys. Lett. 99, 122108 (2011)

Non PMMA based transfer

S.J. Kim et al., Nano Lett, 15,3236 (2015)

Issues:

- Transfer
- Using mobility as a gauging parameter for quality

- Where we are
- Issues
 - Contact resistance
 - Graphene type
 - Mobility

Adoption by industry

Mobility in Si, III- Vs and graphene

S.S. Li et al., Volume 20, Issue 7, July 1977

V. W. L. Chin et al., J. Appl. Phys. 75, 7365 (1994)

K.S.Novoselov et al., Nature 438, 197 (2005)

Mobility is typically used as a gauging parameter in the semiconductor industry

 Dependent only on material properties and independent of geometry

14

Gauging quality with mobility

Substrate effect

C. R Dean et al., Nature Nanotechnology 5, 722–726 (2010)

J. Chan et al., ACS Nano, 6, 3224 (2012)

E. Pallecchi et al., Scientific Reports 4, 4558 (2014)

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

Mobility and channel length (L_{ch})

Mobility previously determined to be dependent on the channel length. L_{ch} dependence attributed to

- device operating partially in the ballistic and diffusive regime
- damage from e beam lithography

Mobility and channel width (W_{ch})

F.T. Vasko et al., Appl. Phys. Lett. 97, 092115 (2010)

A. Venugopal et al., Journal of Appl. Phys. 109, 104511 (2011)

<u>Issue</u> – the geometry effect on mobility in graphene devices is typically not corrected for

W_{ch} dependence attributed partially to edge scattering and partially to electrostatics

Industry Standard vs. Graphene Process

Parameter	Industry	Current Graphene flow	Potential solution
Contact resistance	~ 10 ⁻⁸ ohm – cm²	~ 10 ⁻⁶ ohm –cm²	Contact engineering on a standardized baseline flow
Temperature	< 300 C for BEOL, 700 – 1000 C for FEOL	> 1000 C for CVD type process on Cu, followed by transfer	PECVD growth on arbitrary substrates
Metal deposition	Etch	Liftoff	Develop etch processes to identify and work on etch related issues
Substrate	Si or III-V's	90 or 300 nmSiO ₂ and now BN	PECVD growth on arbitrary substrates including thin oxides and BN
Mobility	Geometry independent	Geometry dependent	Standardized mobility formulation that corrects for geometry effects

18

Summary

- There are demonstrated applications that are unique or enhance what is available in the market today
- Effort toward consistent/reliable graphene device fabrication and large scale integration is still immature
- Issues that need to be addressed include:
 - High contact resistance
 - Geometry dependent mobility
 - \circ $\,$ No well defined path to integration into Si flow
- A prerequisite towards adoption by industry is effort on correcting the known issues and fabricating devices that are consistent and reliable

